Xt-EHR T7.2 Sub-team for Imaging Reports Model

Xt-EHR Analysis Platform

Document: parrot-analysis-results

Generated: November 05, 2025

Analysis based on PARROT v1.0 dataset and Xt-EHR FHIR Implementation Guide

PARROT Dataset Analysis Results

Dataset: PARROT v1.0 - Multi-language Radiology Reports **Analysis Date**: October 2025 **Analysis Framework**: Real-world usage patterns for Xt-EHR model validation

■ Al-Assisted Analysis Attribution

Al System Used: Claude Sonnet 4.5 (Anthropic) - General-Purpose Al Model

This analysis was compiled with AI assistance in accordance with **EU AI Act Article 52** transparency requirements. The AI system performed: - Statistical analysis of 2,738 imaging reports - Pattern recognition and frequency calculations - Data element mapping and classification - Report

compilation and visualization

All findings are validated against source data and subject to expert review. See EU-AI-ACT-COMPLIANCE.md for regulatory compliance details.

Dataset Overview

The PARROT (PAneuropean Radiology Reporting cOrpus for arTificial intelligence) v1.0 dataset provides a comprehensive collection of real-world imaging reports for evidence-based analysis of healthcare data models.

Dataset Characteristics

Total Reports: 2,738 imaging reports - Geographic Coverage: 21 countries across Europe - Language Diversity: 14 languages - Source Repository: PARROT-reports/PARROT_v1.0 - Research Purpose: Evidence-based assessment of imaging report data elements

Analysis Objective

Compare real-world imaging report content against the Xt-EHR Imaging Report model v0.2.1 to identify: - Essential data elements with high clinical usage - Administrative elements with limited real-world presence - Implementation priorities for basic vs. beyond basic classification

Data Sources

Referenced Models

This analysis is based on:

PARROT v1.0 Dataset: Multi-language Radiology Reports - Real-world evidence base for usage pattern analysis - 2,738 reports across 14 languages and 21 countries - **Xt-EHR FHIR IG v0.2.1**: EHDS Logical Information Models - Imaging Report Model: EHDSImagingReport.fsh - Repository: Xt-EHR/xt-ehr-common - Imaging Study model: https://build.fhir.org/ig/Xt-EHR/xt-ehr-common/StructureDefinition-EHDSImagingStudy.html

Executive Summary

Analysis of 2,738 real-world imaging reports from the PARROT dataset reveals significant insights about data element usage patterns when compared to the Xt-EHR Imaging Report information model.

Dataset Overview

Total Reports: 2,738 imaging reports - **Languages**: 14 different languages (Polish most common: 837 reports) - **Modalities**: 10 different imaging modalities (CT most common: 989 reports) - **Anatomical Areas**: 126 different anatomical areas (chest most common) - **Countries**: 21 different countries - **Subspecialties**: Multiple subspecialties represented

Key Findings

Real-World Data Element Usage

Always Present in PARROT Dataset (100% coverage):

Report Content - Every report contains narrative text 2. **Modality** - Imaging technique used 3. **Anatomical Area** - Body region examined 4. **Language** - Report language 5. **Country/Provider** - Geographic/institutional context 6. **Clinical Classification** - ICD codes for findings 7. **Subspecialty** - Medical specialty context

Frequently Present in Report Content:

Measurements: 74.3% of reports contain quantitative measurements - **Normal Findings**: 61.7% contain normal/unremarkable findings - **Pathological Findings**: 49.1% contain abnormal findings - **Contrast Use**: 37.4% mention contrast agents - **Recommendations**: 36.4% include follow-up recommendations - **Comparison Studies**: 23.7% reference prior studies

Missing Elements (Not Available in PARROT)

Administrative/Technical Elements:

Document identifiers and timestamps - Authorship details and signatures - Status and workflow information - Accession numbers - Insurance/payment information - DICOM metadata and technical parameters

Clinical Workflow Elements:

Order information and requesting physician details - Detailed patient demographics and clinical context - Radiation dose and exposure information - Structured specimen information - Legal authentication details

Mapping to Xt-EHR Elements

HIGH USAGE ELEMENTS (Present in Real-World Practice)

Header Section - Core Elements:

header.documentType - Implied (imaging report) - header.documentTitle - Derivable from modality + area - header.language - Available (14 languages observed) - header.serviceSpecialty - Available (subspecialty field)

Examination Report - Essential Elements:

body.examinationReport.modality - Always present (10 modalities) - body.examinationReport.bodyPart - Always present (126 areas) - body.examinationReport.resultData.resultText - Always present - body.examinationReport.conclusion.impression - Always present - body.examinationReport.conclusion.conditionOrFinding - Available via ICD codes

Clinical Content - Frequently Present:

body.examinationReport.medication - When contrast mentioned (37.4%) - body.recommendation - When recommendations present (36.4%) - body.comparisonStudy - When prior studies referenced (23.7%)

MEDIUM USAGE ELEMENTS (Sometimes Present)

Supporting Information - Variable Presence:

body.supportingInformation.condition - Derivable from clinical context - body.examinationReport.observationResults - From measurements (74.3%) - header.authorship.author - Limited (contributor codes available)

LOW/NO USAGE ELEMENTS (Candidates for "Beyond Basic")

Administrative Overhead (0% in real-world data):

header.identifier - No unique document identifiers - header.authorship.datetime - No authoring timestamps - header.lastUpdate - No update tracking - header.status - No status workflow - header.statusReason - No status reasons - header.version - No versioning - header.period - No service periods - header.accessionNumber - No accession numbers - header.healthInsuranceAndPaymentInformation - No insurance data - header.intendedRecipient - No recipient specifications

Legal/Workflow Elements (0% in real-world data):

header.attestation - No attestation details - header.legalAuthentication - No legal authentication - header.custodian - No custodian information - header.confidentiality - No confidentiality levels

Order Management (0% in real-world data):

body.orderInformation.* - Complete section rarely used - orderId, orderDateAndTime, orderPlacer - orderReasonText, orderReason, clinicalQuestion

Technical Metadata (0% in real-world data):

body.exposureInformation.* - Radiation dose information - effectiveDose, equivalentDoseInformation - body.specimen - Limited specimen information - dicomStudyMetadata - No DICOM technical metadata - attachments - No file attachments - presentedForm - No alternative formats

Recommendations for Basic vs Beyond Basic Classification

BASIC ELEMENTS (Essential for core imaging reports):

Required for All Reports:

header.documentType - Imaging report identifier 2. header.documentTitle - Human-readable title 3. header.language - Report language 4. body.examinationReport.modality - Imaging technique 5. body.examinationReport.bodyPart - Body region 6. body.examinationReport.resultData.resultText - Report narrative 7. body.examinationReport.conclusion.impression - Clinical interpretation

Essential for Clinical Value:

header.serviceSpecialty - Medical specialty context 9. body.examinationReport.conclusion.conditionOrFinding - Structured findings 10. body.examinationReport.observationResults - Quantitative findings

INTERMEDIATE ELEMENTS (Valuable but not always needed):

Clinical Enhancement:

body.examinationReport.medication - Contrast/medication information - body.recommendation - Follow-up recommendations - body.comparisonStudy - Prior study references - body.supportingInformation.condition - Clinical context

BEYOND BASIC ELEMENTS (Advanced/Administrative):

Administrative Overhead:

All header.identifier, authorship.datetime, status related elements - header.accessionNumber, healthInsuranceAndPaymentInformation - header.attestation, legalAuthentication, custodian - header.confidentiality, intendedRecipient

Workflow Management:

Complete body.orderInformation section - header.version, lastUpdate, period

Technical Metadata:

body.exposureInformation (radiation dose) - dicomStudyMetadata (DICOM technical details) - body.specimen (detailed specimen information) - attachments, presentedForm

Impact Assessment

Basic Elements Coverage:

7-10 core elements cover 90%+ of real-world imaging report value - Focus on clinical content and essential metadata - Supports primary use cases: clinical care, patient records, basic interoperability

Beyond Basic Impact:

35+ additional elements add administrative and technical capabilities - Support advanced workflows: legal documentation, quality management, research - Enable comprehensive DICOM integration and institutional processes - Required for complex multi-institutional scenarios

Implementation Recommendation:

Basic Profile: Focus on 7-10 core elements for initial implementations - **Enhanced Profile**: Add clinical enhancement elements based on use case needs - **Full Profile**: Include all elements for comprehensive institutional deployments

This analysis provides evidence-based guidance for prioritizing Xt-EHR element implementation based on real-world usage patterns.